sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14157, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([110,6,55]))
pari:[g,chi] = znchar(Mod(4,14157))
Modulus: | \(14157\) | |
Conductor: | \(14157\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(330\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{14157}(4,\cdot)\)
\(\chi_{14157}(322,\cdot)\)
\(\chi_{14157}(355,\cdot)\)
\(\chi_{14157}(790,\cdot)\)
\(\chi_{14157}(823,\cdot)\)
\(\chi_{14157}(907,\cdot)\)
\(\chi_{14157}(940,\cdot)\)
\(\chi_{14157}(1258,\cdot)\)
\(\chi_{14157}(1609,\cdot)\)
\(\chi_{14157}(1642,\cdot)\)
\(\chi_{14157}(2077,\cdot)\)
\(\chi_{14157}(2110,\cdot)\)
\(\chi_{14157}(2194,\cdot)\)
\(\chi_{14157}(2227,\cdot)\)
\(\chi_{14157}(2545,\cdot)\)
\(\chi_{14157}(2578,\cdot)\)
\(\chi_{14157}(2896,\cdot)\)
\(\chi_{14157}(2929,\cdot)\)
\(\chi_{14157}(3364,\cdot)\)
\(\chi_{14157}(3481,\cdot)\)
\(\chi_{14157}(3514,\cdot)\)
\(\chi_{14157}(3865,\cdot)\)
\(\chi_{14157}(4183,\cdot)\)
\(\chi_{14157}(4216,\cdot)\)
\(\chi_{14157}(4651,\cdot)\)
\(\chi_{14157}(4684,\cdot)\)
\(\chi_{14157}(4768,\cdot)\)
\(\chi_{14157}(4801,\cdot)\)
\(\chi_{14157}(5119,\cdot)\)
\(\chi_{14157}(5152,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6293,3511,4357)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{1}{55}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 14157 }(4, a) \) |
\(1\) | \(1\) | \(e\left(\frac{57}{110}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{169}{330}\right)\) | \(e\left(\frac{97}{330}\right)\) | \(e\left(\frac{61}{110}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{134}{165}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{37}{165}\right)\) | \(e\left(\frac{113}{330}\right)\) |
sage:chi.jacobi_sum(n)