Properties

Label 14157.4
Modulus $14157$
Conductor $14157$
Order $330$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14157, base_ring=CyclotomicField(330)) M = H._module chi = DirichletCharacter(H, M([110,6,55]))
 
Copy content pari:[g,chi] = znchar(Mod(4,14157))
 

Basic properties

Modulus: \(14157\)
Conductor: \(14157\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(330\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14157.hr

\(\chi_{14157}(4,\cdot)\) \(\chi_{14157}(322,\cdot)\) \(\chi_{14157}(355,\cdot)\) \(\chi_{14157}(790,\cdot)\) \(\chi_{14157}(823,\cdot)\) \(\chi_{14157}(907,\cdot)\) \(\chi_{14157}(940,\cdot)\) \(\chi_{14157}(1258,\cdot)\) \(\chi_{14157}(1609,\cdot)\) \(\chi_{14157}(1642,\cdot)\) \(\chi_{14157}(2077,\cdot)\) \(\chi_{14157}(2110,\cdot)\) \(\chi_{14157}(2194,\cdot)\) \(\chi_{14157}(2227,\cdot)\) \(\chi_{14157}(2545,\cdot)\) \(\chi_{14157}(2578,\cdot)\) \(\chi_{14157}(2896,\cdot)\) \(\chi_{14157}(2929,\cdot)\) \(\chi_{14157}(3364,\cdot)\) \(\chi_{14157}(3481,\cdot)\) \(\chi_{14157}(3514,\cdot)\) \(\chi_{14157}(3865,\cdot)\) \(\chi_{14157}(4183,\cdot)\) \(\chi_{14157}(4216,\cdot)\) \(\chi_{14157}(4651,\cdot)\) \(\chi_{14157}(4684,\cdot)\) \(\chi_{14157}(4768,\cdot)\) \(\chi_{14157}(4801,\cdot)\) \(\chi_{14157}(5119,\cdot)\) \(\chi_{14157}(5152,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{165})$
Fixed field: Number field defined by a degree 330 polynomial (not computed)

Values on generators

\((6293,3511,4357)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{1}{55}\right),e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 14157 }(4, a) \) \(1\)\(1\)\(e\left(\frac{57}{110}\right)\)\(e\left(\frac{2}{55}\right)\)\(e\left(\frac{169}{330}\right)\)\(e\left(\frac{97}{330}\right)\)\(e\left(\frac{61}{110}\right)\)\(e\left(\frac{1}{33}\right)\)\(e\left(\frac{134}{165}\right)\)\(e\left(\frac{4}{55}\right)\)\(e\left(\frac{37}{165}\right)\)\(e\left(\frac{113}{330}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14157 }(4,a) \;\) at \(\;a = \) e.g. 2