Properties

Label 14157.29
Modulus $14157$
Conductor $14157$
Order $330$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14157, base_ring=CyclotomicField(330)) M = H._module chi = DirichletCharacter(H, M([55,51,110]))
 
Copy content pari:[g,chi] = znchar(Mod(29,14157))
 

Basic properties

Modulus: \(14157\)
Conductor: \(14157\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(330\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14157.ip

\(\chi_{14157}(29,\cdot)\) \(\chi_{14157}(347,\cdot)\) \(\chi_{14157}(380,\cdot)\) \(\chi_{14157}(464,\cdot)\) \(\chi_{14157}(497,\cdot)\) \(\chi_{14157}(932,\cdot)\) \(\chi_{14157}(1283,\cdot)\) \(\chi_{14157}(1316,\cdot)\) \(\chi_{14157}(1634,\cdot)\) \(\chi_{14157}(1751,\cdot)\) \(\chi_{14157}(1784,\cdot)\) \(\chi_{14157}(2219,\cdot)\) \(\chi_{14157}(2252,\cdot)\) \(\chi_{14157}(2570,\cdot)\) \(\chi_{14157}(2603,\cdot)\) \(\chi_{14157}(2921,\cdot)\) \(\chi_{14157}(2954,\cdot)\) \(\chi_{14157}(3038,\cdot)\) \(\chi_{14157}(3071,\cdot)\) \(\chi_{14157}(3539,\cdot)\) \(\chi_{14157}(3857,\cdot)\) \(\chi_{14157}(3890,\cdot)\) \(\chi_{14157}(4241,\cdot)\) \(\chi_{14157}(4325,\cdot)\) \(\chi_{14157}(4358,\cdot)\) \(\chi_{14157}(4793,\cdot)\) \(\chi_{14157}(4826,\cdot)\) \(\chi_{14157}(5144,\cdot)\) \(\chi_{14157}(5177,\cdot)\) \(\chi_{14157}(5495,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{165})$
Fixed field: Number field defined by a degree 330 polynomial (not computed)

Values on generators

\((6293,3511,4357)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{17}{110}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 14157 }(29, a) \) \(1\)\(1\)\(e\left(\frac{36}{55}\right)\)\(e\left(\frac{17}{55}\right)\)\(e\left(\frac{89}{330}\right)\)\(e\left(\frac{137}{330}\right)\)\(e\left(\frac{53}{55}\right)\)\(e\left(\frac{61}{66}\right)\)\(e\left(\frac{23}{330}\right)\)\(e\left(\frac{34}{55}\right)\)\(e\left(\frac{122}{165}\right)\)\(e\left(\frac{163}{330}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14157 }(29,a) \;\) at \(\;a = \) e.g. 2