sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14157, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([55,51,110]))
pari:[g,chi] = znchar(Mod(29,14157))
Modulus: | \(14157\) | |
Conductor: | \(14157\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(330\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{14157}(29,\cdot)\)
\(\chi_{14157}(347,\cdot)\)
\(\chi_{14157}(380,\cdot)\)
\(\chi_{14157}(464,\cdot)\)
\(\chi_{14157}(497,\cdot)\)
\(\chi_{14157}(932,\cdot)\)
\(\chi_{14157}(1283,\cdot)\)
\(\chi_{14157}(1316,\cdot)\)
\(\chi_{14157}(1634,\cdot)\)
\(\chi_{14157}(1751,\cdot)\)
\(\chi_{14157}(1784,\cdot)\)
\(\chi_{14157}(2219,\cdot)\)
\(\chi_{14157}(2252,\cdot)\)
\(\chi_{14157}(2570,\cdot)\)
\(\chi_{14157}(2603,\cdot)\)
\(\chi_{14157}(2921,\cdot)\)
\(\chi_{14157}(2954,\cdot)\)
\(\chi_{14157}(3038,\cdot)\)
\(\chi_{14157}(3071,\cdot)\)
\(\chi_{14157}(3539,\cdot)\)
\(\chi_{14157}(3857,\cdot)\)
\(\chi_{14157}(3890,\cdot)\)
\(\chi_{14157}(4241,\cdot)\)
\(\chi_{14157}(4325,\cdot)\)
\(\chi_{14157}(4358,\cdot)\)
\(\chi_{14157}(4793,\cdot)\)
\(\chi_{14157}(4826,\cdot)\)
\(\chi_{14157}(5144,\cdot)\)
\(\chi_{14157}(5177,\cdot)\)
\(\chi_{14157}(5495,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6293,3511,4357)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{17}{110}\right),e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 14157 }(29, a) \) |
\(1\) | \(1\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{89}{330}\right)\) | \(e\left(\frac{137}{330}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{61}{66}\right)\) | \(e\left(\frac{23}{330}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{122}{165}\right)\) | \(e\left(\frac{163}{330}\right)\) |
sage:chi.jacobi_sum(n)