Properties

Label 14157.2450
Modulus $14157$
Conductor $14157$
Order $660$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14157, base_ring=CyclotomicField(660)) M = H._module chi = DirichletCharacter(H, M([110,318,275]))
 
Copy content pari:[g,chi] = znchar(Mod(2450,14157))
 

Basic properties

Modulus: \(14157\)
Conductor: \(14157\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(660\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14157.jc

\(\chi_{14157}(41,\cdot)\) \(\chi_{14157}(50,\cdot)\) \(\chi_{14157}(167,\cdot)\) \(\chi_{14157}(227,\cdot)\) \(\chi_{14157}(371,\cdot)\) \(\chi_{14157}(392,\cdot)\) \(\chi_{14157}(635,\cdot)\) \(\chi_{14157}(695,\cdot)\) \(\chi_{14157}(722,\cdot)\) \(\chi_{14157}(743,\cdot)\) \(\chi_{14157}(860,\cdot)\) \(\chi_{14157}(986,\cdot)\) \(\chi_{14157}(1073,\cdot)\) \(\chi_{14157}(1163,\cdot)\) \(\chi_{14157}(1190,\cdot)\) \(\chi_{14157}(1337,\cdot)\) \(\chi_{14157}(1454,\cdot)\) \(\chi_{14157}(1514,\cdot)\) \(\chi_{14157}(1658,\cdot)\) \(\chi_{14157}(1679,\cdot)\) \(\chi_{14157}(1865,\cdot)\) \(\chi_{14157}(1922,\cdot)\) \(\chi_{14157}(1982,\cdot)\) \(\chi_{14157}(2009,\cdot)\) \(\chi_{14157}(2147,\cdot)\) \(\chi_{14157}(2273,\cdot)\) \(\chi_{14157}(2360,\cdot)\) \(\chi_{14157}(2450,\cdot)\) \(\chi_{14157}(2477,\cdot)\) \(\chi_{14157}(2615,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{660})$
Fixed field: Number field defined by a degree 660 polynomial (not computed)

Values on generators

\((6293,3511,4357)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{53}{110}\right),e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 14157 }(2450, a) \) \(-1\)\(1\)\(e\left(\frac{43}{660}\right)\)\(e\left(\frac{43}{330}\right)\)\(e\left(\frac{157}{660}\right)\)\(e\left(\frac{137}{220}\right)\)\(e\left(\frac{43}{220}\right)\)\(e\left(\frac{10}{33}\right)\)\(e\left(\frac{227}{330}\right)\)\(e\left(\frac{43}{165}\right)\)\(e\left(\frac{311}{330}\right)\)\(e\left(\frac{49}{660}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14157 }(2450,a) \;\) at \(\;a = \) e.g. 2