sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(14157, base_ring=CyclotomicField(660))
M = H._module
chi = DirichletCharacter(H, M([220,336,275]))
pari:[g,chi] = znchar(Mod(1813,14157))
| Modulus: | \(14157\) | |
| Conductor: | \(14157\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(660\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{14157}(58,\cdot)\)
\(\chi_{14157}(115,\cdot)\)
\(\chi_{14157}(223,\cdot)\)
\(\chi_{14157}(466,\cdot)\)
\(\chi_{14157}(526,\cdot)\)
\(\chi_{14157}(553,\cdot)\)
\(\chi_{14157}(643,\cdot)\)
\(\chi_{14157}(691,\cdot)\)
\(\chi_{14157}(808,\cdot)\)
\(\chi_{14157}(817,\cdot)\)
\(\chi_{14157}(994,\cdot)\)
\(\chi_{14157}(1021,\cdot)\)
\(\chi_{14157}(1138,\cdot)\)
\(\chi_{14157}(1159,\cdot)\)
\(\chi_{14157}(1285,\cdot)\)
\(\chi_{14157}(1345,\cdot)\)
\(\chi_{14157}(1402,\cdot)\)
\(\chi_{14157}(1489,\cdot)\)
\(\chi_{14157}(1510,\cdot)\)
\(\chi_{14157}(1753,\cdot)\)
\(\chi_{14157}(1813,\cdot)\)
\(\chi_{14157}(1840,\cdot)\)
\(\chi_{14157}(1930,\cdot)\)
\(\chi_{14157}(1978,\cdot)\)
\(\chi_{14157}(2095,\cdot)\)
\(\chi_{14157}(2104,\cdot)\)
\(\chi_{14157}(2281,\cdot)\)
\(\chi_{14157}(2425,\cdot)\)
\(\chi_{14157}(2446,\cdot)\)
\(\chi_{14157}(2572,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6293,3511,4357)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{28}{55}\right),e\left(\frac{5}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 14157 }(1813, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{57}{220}\right)\) | \(e\left(\frac{57}{110}\right)\) | \(e\left(\frac{59}{660}\right)\) | \(e\left(\frac{317}{660}\right)\) | \(e\left(\frac{171}{220}\right)\) | \(e\left(\frac{23}{66}\right)\) | \(e\left(\frac{122}{165}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{257}{330}\right)\) | \(e\left(\frac{223}{660}\right)\) |
sage:chi.jacobi_sum(n)