sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(140, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,9,10]))
pari:[g,chi] = znchar(Mod(103,140))
| Modulus: | \(140\) | |
| Conductor: | \(140\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(12\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{140}(3,\cdot)\)
\(\chi_{140}(47,\cdot)\)
\(\chi_{140}(87,\cdot)\)
\(\chi_{140}(103,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((71,57,101)\) → \((-1,-i,e\left(\frac{5}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 140 }(103, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)