sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1392, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([0,21,14,11]))
pari:[g,chi] = znchar(Mod(221,1392))
| Modulus: | \(1392\) | |
| Conductor: | \(1392\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(28\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1392}(101,\cdot)\)
\(\chi_{1392}(221,\cdot)\)
\(\chi_{1392}(269,\cdot)\)
\(\chi_{1392}(293,\cdot)\)
\(\chi_{1392}(317,\cdot)\)
\(\chi_{1392}(437,\cdot)\)
\(\chi_{1392}(461,\cdot)\)
\(\chi_{1392}(485,\cdot)\)
\(\chi_{1392}(533,\cdot)\)
\(\chi_{1392}(653,\cdot)\)
\(\chi_{1392}(773,\cdot)\)
\(\chi_{1392}(1373,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((175,1045,929,1249)\) → \((1,-i,-1,e\left(\frac{11}{28}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(31\) | \(35\) |
| \( \chi_{ 1392 }(221, a) \) |
\(1\) | \(1\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(-i\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{3}{28}\right)\) |
sage:chi.jacobi_sum(n)