sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1375, base_ring=CyclotomicField(100))
M = H._module
chi = DirichletCharacter(H, M([89,20]))
pari:[g,chi] = znchar(Mod(862,1375))
Modulus: | \(1375\) | |
Conductor: | \(1375\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(100\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1375}(37,\cdot)\)
\(\chi_{1375}(53,\cdot)\)
\(\chi_{1375}(97,\cdot)\)
\(\chi_{1375}(102,\cdot)\)
\(\chi_{1375}(192,\cdot)\)
\(\chi_{1375}(213,\cdot)\)
\(\chi_{1375}(223,\cdot)\)
\(\chi_{1375}(258,\cdot)\)
\(\chi_{1375}(312,\cdot)\)
\(\chi_{1375}(328,\cdot)\)
\(\chi_{1375}(372,\cdot)\)
\(\chi_{1375}(377,\cdot)\)
\(\chi_{1375}(467,\cdot)\)
\(\chi_{1375}(488,\cdot)\)
\(\chi_{1375}(498,\cdot)\)
\(\chi_{1375}(533,\cdot)\)
\(\chi_{1375}(587,\cdot)\)
\(\chi_{1375}(603,\cdot)\)
\(\chi_{1375}(647,\cdot)\)
\(\chi_{1375}(652,\cdot)\)
\(\chi_{1375}(742,\cdot)\)
\(\chi_{1375}(763,\cdot)\)
\(\chi_{1375}(773,\cdot)\)
\(\chi_{1375}(808,\cdot)\)
\(\chi_{1375}(862,\cdot)\)
\(\chi_{1375}(878,\cdot)\)
\(\chi_{1375}(922,\cdot)\)
\(\chi_{1375}(927,\cdot)\)
\(\chi_{1375}(1017,\cdot)\)
\(\chi_{1375}(1038,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1002,376)\) → \((e\left(\frac{89}{100}\right),e\left(\frac{1}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 1375 }(862, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{9}{100}\right)\) | \(e\left(\frac{83}{100}\right)\) | \(e\left(\frac{9}{50}\right)\) | \(e\left(\frac{23}{25}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{27}{100}\right)\) | \(e\left(\frac{33}{50}\right)\) | \(e\left(\frac{1}{100}\right)\) | \(e\left(\frac{91}{100}\right)\) | \(e\left(\frac{7}{50}\right)\) |
sage:chi.jacobi_sum(n)