sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1365, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,3,10,7]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(362,1365))
         
     
    
  
   | Modulus: |  \(1365\) |   |  
   | Conductor: |  \(1365\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(12\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{1365}(332,\cdot)\)
  \(\chi_{1365}(362,\cdot)\)
  \(\chi_{1365}(773,\cdot)\)
  \(\chi_{1365}(1328,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((911,547,976,106)\) → \((-1,i,e\left(\frac{5}{6}\right),e\left(\frac{7}{12}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |       
    
    
      | \( \chi_{ 1365 }(362, a) \) | 
      \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)