sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1353, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([5,4,5]))
pari:[g,chi] = znchar(Mod(368,1353))
| Modulus: | \(1353\) | |
| Conductor: | \(1353\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(10\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1353}(245,\cdot)\)
\(\chi_{1353}(368,\cdot)\)
\(\chi_{1353}(614,\cdot)\)
\(\chi_{1353}(983,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((452,739,826)\) → \((-1,e\left(\frac{2}{5}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 1353 }(368, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) |
sage:chi.jacobi_sum(n)