sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1352, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,39,53]))
pari:[g,chi] = znchar(Mod(933,1352))
Modulus: | \(1352\) | |
Conductor: | \(1352\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1352}(69,\cdot)\)
\(\chi_{1352}(101,\cdot)\)
\(\chi_{1352}(173,\cdot)\)
\(\chi_{1352}(205,\cdot)\)
\(\chi_{1352}(277,\cdot)\)
\(\chi_{1352}(309,\cdot)\)
\(\chi_{1352}(381,\cdot)\)
\(\chi_{1352}(413,\cdot)\)
\(\chi_{1352}(517,\cdot)\)
\(\chi_{1352}(589,\cdot)\)
\(\chi_{1352}(621,\cdot)\)
\(\chi_{1352}(693,\cdot)\)
\(\chi_{1352}(725,\cdot)\)
\(\chi_{1352}(797,\cdot)\)
\(\chi_{1352}(829,\cdot)\)
\(\chi_{1352}(901,\cdot)\)
\(\chi_{1352}(933,\cdot)\)
\(\chi_{1352}(1005,\cdot)\)
\(\chi_{1352}(1109,\cdot)\)
\(\chi_{1352}(1141,\cdot)\)
\(\chi_{1352}(1213,\cdot)\)
\(\chi_{1352}(1245,\cdot)\)
\(\chi_{1352}(1317,\cdot)\)
\(\chi_{1352}(1349,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1015,677,1185)\) → \((1,-1,e\left(\frac{53}{78}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 1352 }(933, a) \) |
\(1\) | \(1\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)