Properties

Label 1352.261
Modulus $1352$
Conductor $1352$
Order $26$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(26)) M = H._module chi = DirichletCharacter(H, M([0,13,22]))
 
Copy content pari:[g,chi] = znchar(Mod(261,1352))
 

Basic properties

Modulus: \(1352\)
Conductor: \(1352\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(26\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1352.bf

\(\chi_{1352}(53,\cdot)\) \(\chi_{1352}(157,\cdot)\) \(\chi_{1352}(261,\cdot)\) \(\chi_{1352}(365,\cdot)\) \(\chi_{1352}(469,\cdot)\) \(\chi_{1352}(573,\cdot)\) \(\chi_{1352}(781,\cdot)\) \(\chi_{1352}(885,\cdot)\) \(\chi_{1352}(989,\cdot)\) \(\chi_{1352}(1093,\cdot)\) \(\chi_{1352}(1197,\cdot)\) \(\chi_{1352}(1301,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: Number field defined by a degree 26 polynomial

Values on generators

\((1015,677,1185)\) → \((1,-1,e\left(\frac{11}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 1352 }(261, a) \) \(1\)\(1\)\(e\left(\frac{11}{26}\right)\)\(e\left(\frac{3}{26}\right)\)\(e\left(\frac{7}{13}\right)\)\(e\left(\frac{11}{13}\right)\)\(e\left(\frac{17}{26}\right)\)\(e\left(\frac{7}{13}\right)\)\(e\left(\frac{7}{13}\right)\)\(-1\)\(e\left(\frac{25}{26}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1352 }(261,a) \;\) at \(\;a = \) e.g. 2