sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([28,93]))
pari:[g,chi] = znchar(Mod(1123,1323))
| Modulus: | \(1323\) | |
| Conductor: | \(1323\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1323}(40,\cdot)\)
\(\chi_{1323}(52,\cdot)\)
\(\chi_{1323}(103,\cdot)\)
\(\chi_{1323}(115,\cdot)\)
\(\chi_{1323}(229,\cdot)\)
\(\chi_{1323}(241,\cdot)\)
\(\chi_{1323}(292,\cdot)\)
\(\chi_{1323}(304,\cdot)\)
\(\chi_{1323}(355,\cdot)\)
\(\chi_{1323}(367,\cdot)\)
\(\chi_{1323}(418,\cdot)\)
\(\chi_{1323}(430,\cdot)\)
\(\chi_{1323}(481,\cdot)\)
\(\chi_{1323}(493,\cdot)\)
\(\chi_{1323}(544,\cdot)\)
\(\chi_{1323}(556,\cdot)\)
\(\chi_{1323}(670,\cdot)\)
\(\chi_{1323}(682,\cdot)\)
\(\chi_{1323}(733,\cdot)\)
\(\chi_{1323}(745,\cdot)\)
\(\chi_{1323}(796,\cdot)\)
\(\chi_{1323}(808,\cdot)\)
\(\chi_{1323}(859,\cdot)\)
\(\chi_{1323}(871,\cdot)\)
\(\chi_{1323}(922,\cdot)\)
\(\chi_{1323}(934,\cdot)\)
\(\chi_{1323}(985,\cdot)\)
\(\chi_{1323}(997,\cdot)\)
\(\chi_{1323}(1111,\cdot)\)
\(\chi_{1323}(1123,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((785,1081)\) → \((e\left(\frac{2}{9}\right),e\left(\frac{31}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 1323 }(1123, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{65}{126}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)