sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([35,111]))
pari:[g,chi] = znchar(Mod(1004,1323))
Modulus: | \(1323\) | |
Conductor: | \(1323\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1323}(47,\cdot)\)
\(\chi_{1323}(59,\cdot)\)
\(\chi_{1323}(110,\cdot)\)
\(\chi_{1323}(122,\cdot)\)
\(\chi_{1323}(173,\cdot)\)
\(\chi_{1323}(185,\cdot)\)
\(\chi_{1323}(236,\cdot)\)
\(\chi_{1323}(248,\cdot)\)
\(\chi_{1323}(299,\cdot)\)
\(\chi_{1323}(311,\cdot)\)
\(\chi_{1323}(425,\cdot)\)
\(\chi_{1323}(437,\cdot)\)
\(\chi_{1323}(488,\cdot)\)
\(\chi_{1323}(500,\cdot)\)
\(\chi_{1323}(551,\cdot)\)
\(\chi_{1323}(563,\cdot)\)
\(\chi_{1323}(614,\cdot)\)
\(\chi_{1323}(626,\cdot)\)
\(\chi_{1323}(677,\cdot)\)
\(\chi_{1323}(689,\cdot)\)
\(\chi_{1323}(740,\cdot)\)
\(\chi_{1323}(752,\cdot)\)
\(\chi_{1323}(866,\cdot)\)
\(\chi_{1323}(878,\cdot)\)
\(\chi_{1323}(929,\cdot)\)
\(\chi_{1323}(941,\cdot)\)
\(\chi_{1323}(992,\cdot)\)
\(\chi_{1323}(1004,\cdot)\)
\(\chi_{1323}(1055,\cdot)\)
\(\chi_{1323}(1067,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((785,1081)\) → \((e\left(\frac{5}{18}\right),e\left(\frac{37}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 1323 }(1004, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{126}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{107}{126}\right)\) | \(e\left(\frac{37}{126}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)