L(s) = 1 | + (0.411 + 0.911i)2-s + (−0.661 + 0.749i)4-s + (0.921 − 0.388i)5-s + (−0.955 − 0.294i)8-s + (0.733 + 0.680i)10-s + (0.583 − 0.811i)11-s + (−0.270 + 0.962i)13-s + (−0.124 − 0.992i)16-s + (0.365 + 0.930i)17-s + (0.5 + 0.866i)19-s + (−0.318 + 0.947i)20-s + (0.980 + 0.198i)22-s + (−0.980 − 0.198i)23-s + (0.698 − 0.715i)25-s + (−0.988 + 0.149i)26-s + ⋯ |
L(s) = 1 | + (0.411 + 0.911i)2-s + (−0.661 + 0.749i)4-s + (0.921 − 0.388i)5-s + (−0.955 − 0.294i)8-s + (0.733 + 0.680i)10-s + (0.583 − 0.811i)11-s + (−0.270 + 0.962i)13-s + (−0.124 − 0.992i)16-s + (0.365 + 0.930i)17-s + (0.5 + 0.866i)19-s + (−0.318 + 0.947i)20-s + (0.980 + 0.198i)22-s + (−0.980 − 0.198i)23-s + (0.698 − 0.715i)25-s + (−0.988 + 0.149i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0901 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0901 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.441748056 + 1.578087574i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.441748056 + 1.578087574i\) |
\(L(1)\) |
\(\approx\) |
\(1.253314153 + 0.7303283862i\) |
\(L(1)\) |
\(\approx\) |
\(1.253314153 + 0.7303283862i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.411 + 0.911i)T \) |
| 5 | \( 1 + (0.921 - 0.388i)T \) |
| 11 | \( 1 + (0.583 - 0.811i)T \) |
| 13 | \( 1 + (-0.270 + 0.962i)T \) |
| 17 | \( 1 + (0.365 + 0.930i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.980 - 0.198i)T \) |
| 29 | \( 1 + (0.661 + 0.749i)T \) |
| 31 | \( 1 + (-0.173 - 0.984i)T \) |
| 37 | \( 1 + (0.623 - 0.781i)T \) |
| 41 | \( 1 + (0.921 - 0.388i)T \) |
| 43 | \( 1 + (-0.797 + 0.603i)T \) |
| 47 | \( 1 + (-0.583 + 0.811i)T \) |
| 53 | \( 1 + (-0.365 + 0.930i)T \) |
| 59 | \( 1 + (0.542 - 0.840i)T \) |
| 61 | \( 1 + (0.661 + 0.749i)T \) |
| 67 | \( 1 + (0.766 - 0.642i)T \) |
| 71 | \( 1 + (-0.365 + 0.930i)T \) |
| 73 | \( 1 + (0.900 - 0.433i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.270 + 0.962i)T \) |
| 89 | \( 1 + (0.826 + 0.563i)T \) |
| 97 | \( 1 + (-0.766 - 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.66456294125428654717445990213, −20.10681303008499838735355617343, −19.45483743963392888435372871532, −18.36024163407644384823897206931, −17.841026864386714356032406654914, −17.37095016538276414312621420858, −16.053649206224680957520824629379, −15.06172455148949244828444276568, −14.46180489967253976354186007465, −13.68654397352184215291957249526, −13.11270113723030797459576932271, −12.155339815456314662586853093367, −11.56607967725754041746613159594, −10.55073916330442431026287459671, −9.79480440366229150800969226861, −9.51987420239668145117524561359, −8.32227298033480993732311774201, −7.10521308462615603439842332907, −6.27028211878997622131850200835, −5.294419117136082922801117650251, −4.74031651174405937054379445457, −3.48818075680908713814011076515, −2.70776547492179057937197962873, −1.92934374037767208711775492401, −0.837867962176303374648077824605,
1.15130962637564084870668943833, 2.31986863897067097901613245814, 3.60020569761849917082680073757, 4.30422537602742886491234886536, 5.35812291408339556672295177217, 6.08282078396908094320594610300, 6.54239356496899182682800760532, 7.77310878306689711883293091619, 8.47222252302741259432554489663, 9.32985203070611584835283802950, 9.896201980773144628764449185501, 11.16433288057801605183728597398, 12.20747411434374205199311806656, 12.742593159634594803514680573, 13.764979372407873643750451246268, 14.227539087956416103119309483376, 14.75485860211868256494979946062, 16.127091496071136474071622302230, 16.46659156653683074839506024148, 17.11947831308528731343496188674, 17.91663857433544108504020007659, 18.65062622756648153913946866393, 19.551001993428552196882355438580, 20.65949109169296450569883581141, 21.44491338262415674524585886635