Properties

Label 1303.359
Modulus $1303$
Conductor $1303$
Order $7$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1303, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([4]))
 
Copy content pari:[g,chi] = znchar(Mod(359,1303))
 

Basic properties

Modulus: \(1303\)
Conductor: \(1303\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(7\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1303.e

\(\chi_{1303}(52,\cdot)\) \(\chi_{1303}(98,\cdot)\) \(\chi_{1303}(359,\cdot)\) \(\chi_{1303}(426,\cdot)\) \(\chi_{1303}(483,\cdot)\) \(\chi_{1303}(1187,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 7.7.4894028501935246129.1

Values on generators

\(6\) → \(e\left(\frac{2}{7}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1303 }(359, a) \) \(1\)\(1\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(1\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1303 }(359,a) \;\) at \(\;a = \) e.g. 2