Properties

Label 1300.337
Modulus $1300$
Conductor $325$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1300, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,9,10]))
 
Copy content pari:[g,chi] = znchar(Mod(337,1300))
 

Basic properties

Modulus: \(1300\)
Conductor: \(325\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{325}(12,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1300.ce

\(\chi_{1300}(77,\cdot)\) \(\chi_{1300}(233,\cdot)\) \(\chi_{1300}(337,\cdot)\) \(\chi_{1300}(597,\cdot)\) \(\chi_{1300}(753,\cdot)\) \(\chi_{1300}(1013,\cdot)\) \(\chi_{1300}(1117,\cdot)\) \(\chi_{1300}(1273,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.401221017379430122673511505126953125.1

Values on generators

\((651,677,301)\) → \((1,e\left(\frac{9}{20}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1300 }(337, a) \) \(-1\)\(1\)\(e\left(\frac{3}{20}\right)\)\(-i\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{9}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1300 }(337,a) \;\) at \(\;a = \) e.g. 2