sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,0,3]))
pari:[g,chi] = znchar(Mod(1023,1280))
\(\chi_{1280}(767,\cdot)\)
\(\chi_{1280}(1023,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,261,257)\) → \((-1,1,-i)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 1280 }(1023, a) \) |
\(1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(-i\) | \(1\) | \(1\) | \(-i\) | \(i\) |
sage:chi.jacobi_sum(n)