Properties

Label 127072.1179
Modulus $127072$
Conductor $127072$
Order $760$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(127072, base_ring=CyclotomicField(760)) M = H._module chi = DirichletCharacter(H, M([380,95,76,320]))
 
Copy content pari:[g,chi] = znchar(Mod(1179,127072))
 

Basic properties

Modulus: \(127072\)
Conductor: \(127072\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(760\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 127072.mp

\(\chi_{127072}(875,\cdot)\) \(\chi_{127072}(1179,\cdot)\) \(\chi_{127072}(1635,\cdot)\) \(\chi_{127072}(2395,\cdot)\) \(\chi_{127072}(2547,\cdot)\) \(\chi_{127072}(2851,\cdot)\) \(\chi_{127072}(3307,\cdot)\) \(\chi_{127072}(4067,\cdot)\) \(\chi_{127072}(4219,\cdot)\) \(\chi_{127072}(4523,\cdot)\) \(\chi_{127072}(4979,\cdot)\) \(\chi_{127072}(5739,\cdot)\) \(\chi_{127072}(5891,\cdot)\) \(\chi_{127072}(6195,\cdot)\) \(\chi_{127072}(6651,\cdot)\) \(\chi_{127072}(7411,\cdot)\) \(\chi_{127072}(7563,\cdot)\) \(\chi_{127072}(7867,\cdot)\) \(\chi_{127072}(8323,\cdot)\) \(\chi_{127072}(9083,\cdot)\) \(\chi_{127072}(9235,\cdot)\) \(\chi_{127072}(9539,\cdot)\) \(\chi_{127072}(9995,\cdot)\) \(\chi_{127072}(10755,\cdot)\) \(\chi_{127072}(10907,\cdot)\) \(\chi_{127072}(11211,\cdot)\) \(\chi_{127072}(11667,\cdot)\) \(\chi_{127072}(12427,\cdot)\) \(\chi_{127072}(12579,\cdot)\) \(\chi_{127072}(12883,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{760})$
Fixed field: Number field defined by a degree 760 polynomial (not computed)

Values on generators

\((39711,47653,69313,14081)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{1}{10}\right),e\left(\frac{8}{19}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 127072 }(1179, a) \) \(1\)\(1\)\(e\left(\frac{153}{760}\right)\)\(e\left(\frac{159}{760}\right)\)\(e\left(\frac{231}{380}\right)\)\(e\left(\frac{153}{380}\right)\)\(e\left(\frac{381}{760}\right)\)\(e\left(\frac{39}{95}\right)\)\(e\left(\frac{53}{95}\right)\)\(e\left(\frac{123}{152}\right)\)\(e\left(\frac{55}{76}\right)\)\(e\left(\frac{159}{380}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 127072 }(1179,a) \;\) at \(\;a = \) e.g. 2