sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(127072, base_ring=CyclotomicField(760))
M = H._module
chi = DirichletCharacter(H, M([380,95,76,320]))
pari:[g,chi] = znchar(Mod(1179,127072))
| Modulus: | \(127072\) | |
| Conductor: | \(127072\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(760\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{127072}(875,\cdot)\)
\(\chi_{127072}(1179,\cdot)\)
\(\chi_{127072}(1635,\cdot)\)
\(\chi_{127072}(2395,\cdot)\)
\(\chi_{127072}(2547,\cdot)\)
\(\chi_{127072}(2851,\cdot)\)
\(\chi_{127072}(3307,\cdot)\)
\(\chi_{127072}(4067,\cdot)\)
\(\chi_{127072}(4219,\cdot)\)
\(\chi_{127072}(4523,\cdot)\)
\(\chi_{127072}(4979,\cdot)\)
\(\chi_{127072}(5739,\cdot)\)
\(\chi_{127072}(5891,\cdot)\)
\(\chi_{127072}(6195,\cdot)\)
\(\chi_{127072}(6651,\cdot)\)
\(\chi_{127072}(7411,\cdot)\)
\(\chi_{127072}(7563,\cdot)\)
\(\chi_{127072}(7867,\cdot)\)
\(\chi_{127072}(8323,\cdot)\)
\(\chi_{127072}(9083,\cdot)\)
\(\chi_{127072}(9235,\cdot)\)
\(\chi_{127072}(9539,\cdot)\)
\(\chi_{127072}(9995,\cdot)\)
\(\chi_{127072}(10755,\cdot)\)
\(\chi_{127072}(10907,\cdot)\)
\(\chi_{127072}(11211,\cdot)\)
\(\chi_{127072}(11667,\cdot)\)
\(\chi_{127072}(12427,\cdot)\)
\(\chi_{127072}(12579,\cdot)\)
\(\chi_{127072}(12883,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((39711,47653,69313,14081)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{1}{10}\right),e\left(\frac{8}{19}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 127072 }(1179, a) \) |
\(1\) | \(1\) | \(e\left(\frac{153}{760}\right)\) | \(e\left(\frac{159}{760}\right)\) | \(e\left(\frac{231}{380}\right)\) | \(e\left(\frac{153}{380}\right)\) | \(e\left(\frac{381}{760}\right)\) | \(e\left(\frac{39}{95}\right)\) | \(e\left(\frac{53}{95}\right)\) | \(e\left(\frac{123}{152}\right)\) | \(e\left(\frac{55}{76}\right)\) | \(e\left(\frac{159}{380}\right)\) |
sage:chi.jacobi_sum(n)