sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1260, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([3,0,3,2]))
pari:[g,chi] = znchar(Mod(919,1260))
\(\chi_{1260}(739,\cdot)\)
\(\chi_{1260}(919,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((631,281,757,1081)\) → \((-1,1,-1,e\left(\frac{1}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 1260 }(919, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)