Properties

Label 1248.1241
Modulus $1248$
Conductor $624$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,3,6,5]))
 
Copy content pari:[g,chi] = znchar(Mod(1241,1248))
 

Basic properties

Modulus: \(1248\)
Conductor: \(624\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{624}(149,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1248.cu

\(\chi_{1248}(137,\cdot)\) \(\chi_{1248}(665,\cdot)\) \(\chi_{1248}(713,\cdot)\) \(\chi_{1248}(1241,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.11222620070536916307542016.1

Values on generators

\((703,1093,833,769)\) → \((1,i,-1,e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1248 }(1241, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)\(e\left(\frac{11}{12}\right)\)\(-i\)\(e\left(\frac{7}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1248 }(1241,a) \;\) at \(\;a = \) e.g. 2