Properties

Label 1225.bl
Modulus $1225$
Conductor $1225$
Order $70$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1225, base_ring=CyclotomicField(70)) M = H._module chi = DirichletCharacter(H, M([28,45])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(6,1225)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1225\)
Conductor: \(1225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(70\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(8\) \(9\) \(11\) \(12\) \(13\) \(16\)
\(\chi_{1225}(6,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{16}{35}\right)\)
\(\chi_{1225}(41,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{33}{35}\right)\)
\(\chi_{1225}(111,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{32}{35}\right)\)
\(\chi_{1225}(181,\cdot)\) \(-1\) \(1\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{31}{35}\right)\)
\(\chi_{1225}(216,\cdot)\) \(-1\) \(1\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{13}{35}\right)\)
\(\chi_{1225}(286,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{12}{35}\right)\)
\(\chi_{1225}(321,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{29}{35}\right)\)
\(\chi_{1225}(356,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{11}{35}\right)\)
\(\chi_{1225}(461,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{27}{35}\right)\)
\(\chi_{1225}(496,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{9}{35}\right)\)
\(\chi_{1225}(531,\cdot)\) \(-1\) \(1\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{26}{35}\right)\)
\(\chi_{1225}(566,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{8}{35}\right)\)
\(\chi_{1225}(671,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{24}{35}\right)\)
\(\chi_{1225}(706,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{6}{35}\right)\)
\(\chi_{1225}(741,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{23}{35}\right)\)
\(\chi_{1225}(811,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{22}{35}\right)\)
\(\chi_{1225}(846,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{4}{35}\right)\)
\(\chi_{1225}(916,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{3}{35}\right)\)
\(\chi_{1225}(986,\cdot)\) \(-1\) \(1\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{2}{35}\right)\)
\(\chi_{1225}(1021,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{19}{35}\right)\)
\(\chi_{1225}(1056,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{1}{35}\right)\)
\(\chi_{1225}(1091,\cdot)\) \(-1\) \(1\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{18}{35}\right)\)
\(\chi_{1225}(1161,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{17}{35}\right)\)
\(\chi_{1225}(1196,\cdot)\) \(-1\) \(1\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{34}{35}\right)\)