sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([63,82]))
pari:[g,chi] = znchar(Mod(768,1225))
\(\chi_{1225}(82,\cdot)\)
\(\chi_{1225}(143,\cdot)\)
\(\chi_{1225}(157,\cdot)\)
\(\chi_{1225}(243,\cdot)\)
\(\chi_{1225}(257,\cdot)\)
\(\chi_{1225}(318,\cdot)\)
\(\chi_{1225}(332,\cdot)\)
\(\chi_{1225}(418,\cdot)\)
\(\chi_{1225}(432,\cdot)\)
\(\chi_{1225}(493,\cdot)\)
\(\chi_{1225}(507,\cdot)\)
\(\chi_{1225}(593,\cdot)\)
\(\chi_{1225}(682,\cdot)\)
\(\chi_{1225}(768,\cdot)\)
\(\chi_{1225}(782,\cdot)\)
\(\chi_{1225}(843,\cdot)\)
\(\chi_{1225}(857,\cdot)\)
\(\chi_{1225}(943,\cdot)\)
\(\chi_{1225}(957,\cdot)\)
\(\chi_{1225}(1018,\cdot)\)
\(\chi_{1225}(1032,\cdot)\)
\(\chi_{1225}(1118,\cdot)\)
\(\chi_{1225}(1132,\cdot)\)
\(\chi_{1225}(1193,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1177,101)\) → \((-i,e\left(\frac{41}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
| \( \chi_{ 1225 }(768, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{11}{21}\right)\) |
sage:chi.jacobi_sum(n)