sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([63,50]))
pari:[g,chi] = znchar(Mod(739,1225))
| Modulus: | \(1225\) | |
| Conductor: | \(1225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1225}(4,\cdot)\)
\(\chi_{1225}(9,\cdot)\)
\(\chi_{1225}(39,\cdot)\)
\(\chi_{1225}(44,\cdot)\)
\(\chi_{1225}(109,\cdot)\)
\(\chi_{1225}(114,\cdot)\)
\(\chi_{1225}(144,\cdot)\)
\(\chi_{1225}(179,\cdot)\)
\(\chi_{1225}(184,\cdot)\)
\(\chi_{1225}(219,\cdot)\)
\(\chi_{1225}(254,\cdot)\)
\(\chi_{1225}(284,\cdot)\)
\(\chi_{1225}(289,\cdot)\)
\(\chi_{1225}(319,\cdot)\)
\(\chi_{1225}(354,\cdot)\)
\(\chi_{1225}(359,\cdot)\)
\(\chi_{1225}(389,\cdot)\)
\(\chi_{1225}(394,\cdot)\)
\(\chi_{1225}(429,\cdot)\)
\(\chi_{1225}(464,\cdot)\)
\(\chi_{1225}(494,\cdot)\)
\(\chi_{1225}(529,\cdot)\)
\(\chi_{1225}(534,\cdot)\)
\(\chi_{1225}(564,\cdot)\)
\(\chi_{1225}(604,\cdot)\)
\(\chi_{1225}(634,\cdot)\)
\(\chi_{1225}(639,\cdot)\)
\(\chi_{1225}(669,\cdot)\)
\(\chi_{1225}(709,\cdot)\)
\(\chi_{1225}(739,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1177,101)\) → \((e\left(\frac{3}{10}\right),e\left(\frac{5}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
| \( \chi_{ 1225 }(739, a) \) |
\(1\) | \(1\) | \(e\left(\frac{103}{210}\right)\) | \(e\left(\frac{71}{210}\right)\) | \(e\left(\frac{103}{105}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{33}{70}\right)\) | \(e\left(\frac{71}{105}\right)\) | \(e\left(\frac{34}{105}\right)\) | \(e\left(\frac{67}{210}\right)\) | \(e\left(\frac{39}{70}\right)\) | \(e\left(\frac{101}{105}\right)\) |
sage:chi.jacobi_sum(n)