sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([42,100]))
pari:[g,chi] = znchar(Mod(16,1225))
Modulus: | \(1225\) | |
Conductor: | \(1225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(105\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1225}(11,\cdot)\)
\(\chi_{1225}(16,\cdot)\)
\(\chi_{1225}(46,\cdot)\)
\(\chi_{1225}(81,\cdot)\)
\(\chi_{1225}(86,\cdot)\)
\(\chi_{1225}(121,\cdot)\)
\(\chi_{1225}(156,\cdot)\)
\(\chi_{1225}(186,\cdot)\)
\(\chi_{1225}(191,\cdot)\)
\(\chi_{1225}(221,\cdot)\)
\(\chi_{1225}(256,\cdot)\)
\(\chi_{1225}(261,\cdot)\)
\(\chi_{1225}(291,\cdot)\)
\(\chi_{1225}(296,\cdot)\)
\(\chi_{1225}(331,\cdot)\)
\(\chi_{1225}(366,\cdot)\)
\(\chi_{1225}(396,\cdot)\)
\(\chi_{1225}(431,\cdot)\)
\(\chi_{1225}(436,\cdot)\)
\(\chi_{1225}(466,\cdot)\)
\(\chi_{1225}(506,\cdot)\)
\(\chi_{1225}(536,\cdot)\)
\(\chi_{1225}(541,\cdot)\)
\(\chi_{1225}(571,\cdot)\)
\(\chi_{1225}(611,\cdot)\)
\(\chi_{1225}(641,\cdot)\)
\(\chi_{1225}(646,\cdot)\)
\(\chi_{1225}(681,\cdot)\)
\(\chi_{1225}(711,\cdot)\)
\(\chi_{1225}(746,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1177,101)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{10}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 1225 }(16, a) \) |
\(1\) | \(1\) | \(e\left(\frac{61}{105}\right)\) | \(e\left(\frac{92}{105}\right)\) | \(e\left(\frac{17}{105}\right)\) | \(e\left(\frac{16}{35}\right)\) | \(e\left(\frac{26}{35}\right)\) | \(e\left(\frac{79}{105}\right)\) | \(e\left(\frac{26}{105}\right)\) | \(e\left(\frac{4}{105}\right)\) | \(e\left(\frac{18}{35}\right)\) | \(e\left(\frac{34}{105}\right)\) |
sage:chi.jacobi_sum(n)