sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([14,50]))
pari:[g,chi] = znchar(Mod(1191,1225))
| Modulus: | \(1225\) | |
| Conductor: | \(1225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(35\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1225}(36,\cdot)\)
\(\chi_{1225}(71,\cdot)\)
\(\chi_{1225}(106,\cdot)\)
\(\chi_{1225}(141,\cdot)\)
\(\chi_{1225}(211,\cdot)\)
\(\chi_{1225}(281,\cdot)\)
\(\chi_{1225}(316,\cdot)\)
\(\chi_{1225}(386,\cdot)\)
\(\chi_{1225}(421,\cdot)\)
\(\chi_{1225}(456,\cdot)\)
\(\chi_{1225}(561,\cdot)\)
\(\chi_{1225}(596,\cdot)\)
\(\chi_{1225}(631,\cdot)\)
\(\chi_{1225}(666,\cdot)\)
\(\chi_{1225}(771,\cdot)\)
\(\chi_{1225}(806,\cdot)\)
\(\chi_{1225}(841,\cdot)\)
\(\chi_{1225}(911,\cdot)\)
\(\chi_{1225}(946,\cdot)\)
\(\chi_{1225}(1016,\cdot)\)
\(\chi_{1225}(1086,\cdot)\)
\(\chi_{1225}(1121,\cdot)\)
\(\chi_{1225}(1156,\cdot)\)
\(\chi_{1225}(1191,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1177,101)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{5}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
| \( \chi_{ 1225 }(1191, a) \) |
\(1\) | \(1\) | \(e\left(\frac{27}{35}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{19}{35}\right)\) | \(e\left(\frac{31}{35}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{8}{35}\right)\) | \(e\left(\frac{27}{35}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{13}{35}\right)\) | \(e\left(\frac{3}{35}\right)\) |
sage:chi.jacobi_sum(n)