Properties

Label 1220.663
Modulus $1220$
Conductor $1220$
Order $20$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1220, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,15,11]))
 
Copy content pari:[g,chi] = znchar(Mod(663,1220))
 

Basic properties

Modulus: \(1220\)
Conductor: \(1220\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1220.bz

\(\chi_{1220}(23,\cdot)\) \(\chi_{1220}(587,\cdot)\) \(\chi_{1220}(643,\cdot)\) \(\chi_{1220}(647,\cdot)\) \(\chi_{1220}(663,\cdot)\) \(\chi_{1220}(1167,\cdot)\) \(\chi_{1220}(1183,\cdot)\) \(\chi_{1220}(1187,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.266941959144749707507722683125783712000000000000000.2

Values on generators

\((611,977,1161)\) → \((-1,-i,e\left(\frac{11}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 1220 }(663, a) \) \(-1\)\(1\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(-i\)\(i\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(i\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{20}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1220 }(663,a) \;\) at \(\;a = \) e.g. 2