sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1215, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([1,3]))
pari:[g,chi] = znchar(Mod(809,1215))
\(\chi_{1215}(404,\cdot)\)
\(\chi_{1215}(809,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((731,487)\) → \((e\left(\frac{1}{6}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 1215 }(809, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)