Properties

Label 12138.691
Modulus $12138$
Conductor $2023$
Order $816$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12138, base_ring=CyclotomicField(816)) M = H._module chi = DirichletCharacter(H, M([0,680,309]))
 
Copy content pari:[g,chi] = znchar(Mod(691,12138))
 

Basic properties

Modulus: \(12138\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(816\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2023}(691,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 12138.da

\(\chi_{12138}(31,\cdot)\) \(\chi_{12138}(61,\cdot)\) \(\chi_{12138}(73,\cdot)\) \(\chi_{12138}(199,\cdot)\) \(\chi_{12138}(241,\cdot)\) \(\chi_{12138}(283,\cdot)\) \(\chi_{12138}(313,\cdot)\) \(\chi_{12138}(367,\cdot)\) \(\chi_{12138}(397,\cdot)\) \(\chi_{12138}(439,\cdot)\) \(\chi_{12138}(481,\cdot)\) \(\chi_{12138}(607,\cdot)\) \(\chi_{12138}(619,\cdot)\) \(\chi_{12138}(649,\cdot)\) \(\chi_{12138}(691,\cdot)\) \(\chi_{12138}(703,\cdot)\) \(\chi_{12138}(745,\cdot)\) \(\chi_{12138}(775,\cdot)\) \(\chi_{12138}(787,\cdot)\) \(\chi_{12138}(913,\cdot)\) \(\chi_{12138}(955,\cdot)\) \(\chi_{12138}(997,\cdot)\) \(\chi_{12138}(1027,\cdot)\) \(\chi_{12138}(1111,\cdot)\) \(\chi_{12138}(1153,\cdot)\) \(\chi_{12138}(1195,\cdot)\) \(\chi_{12138}(1321,\cdot)\) \(\chi_{12138}(1333,\cdot)\) \(\chi_{12138}(1363,\cdot)\) \(\chi_{12138}(1417,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{816})$
Fixed field: Number field defined by a degree 816 polynomial (not computed)

Values on generators

\((8093,10405,9829)\) → \((1,e\left(\frac{5}{6}\right),e\left(\frac{103}{272}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 12138 }(691, a) \) \(1\)\(1\)\(e\left(\frac{721}{816}\right)\)\(e\left(\frac{35}{816}\right)\)\(e\left(\frac{49}{68}\right)\)\(e\left(\frac{191}{408}\right)\)\(e\left(\frac{91}{816}\right)\)\(e\left(\frac{313}{408}\right)\)\(e\left(\frac{91}{272}\right)\)\(e\left(\frac{197}{816}\right)\)\(e\left(\frac{421}{816}\right)\)\(e\left(\frac{69}{272}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 12138 }(691,a) \;\) at \(\;a = \) e.g. 2