Properties

Label 12138.139
Modulus $12138$
Conductor $2023$
Order $272$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12138, base_ring=CyclotomicField(272)) M = H._module chi = DirichletCharacter(H, M([0,136,241]))
 
Copy content pari:[g,chi] = znchar(Mod(139,12138))
 

Basic properties

Modulus: \(12138\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(272\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2023}(139,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 12138.cr

\(\chi_{12138}(97,\cdot)\) \(\chi_{12138}(139,\cdot)\) \(\chi_{12138}(181,\cdot)\) \(\chi_{12138}(265,\cdot)\) \(\chi_{12138}(517,\cdot)\) \(\chi_{12138}(601,\cdot)\) \(\chi_{12138}(685,\cdot)\) \(\chi_{12138}(811,\cdot)\) \(\chi_{12138}(853,\cdot)\) \(\chi_{12138}(895,\cdot)\) \(\chi_{12138}(979,\cdot)\) \(\chi_{12138}(1315,\cdot)\) \(\chi_{12138}(1357,\cdot)\) \(\chi_{12138}(1399,\cdot)\) \(\chi_{12138}(1525,\cdot)\) \(\chi_{12138}(1567,\cdot)\) \(\chi_{12138}(1609,\cdot)\) \(\chi_{12138}(1693,\cdot)\) \(\chi_{12138}(1945,\cdot)\) \(\chi_{12138}(2029,\cdot)\) \(\chi_{12138}(2071,\cdot)\) \(\chi_{12138}(2113,\cdot)\) \(\chi_{12138}(2239,\cdot)\) \(\chi_{12138}(2281,\cdot)\) \(\chi_{12138}(2323,\cdot)\) \(\chi_{12138}(2407,\cdot)\) \(\chi_{12138}(2659,\cdot)\) \(\chi_{12138}(2743,\cdot)\) \(\chi_{12138}(2785,\cdot)\) \(\chi_{12138}(2827,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{272})$
Fixed field: Number field defined by a degree 272 polynomial (not computed)

Values on generators

\((8093,10405,9829)\) → \((1,-1,e\left(\frac{241}{272}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 12138 }(139, a) \) \(1\)\(1\)\(e\left(\frac{109}{272}\right)\)\(e\left(\frac{103}{272}\right)\)\(e\left(\frac{11}{68}\right)\)\(e\left(\frac{123}{136}\right)\)\(e\left(\frac{159}{272}\right)\)\(e\left(\frac{109}{136}\right)\)\(e\left(\frac{205}{272}\right)\)\(e\left(\frac{129}{272}\right)\)\(e\left(\frac{81}{272}\right)\)\(e\left(\frac{3}{272}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 12138 }(139,a) \;\) at \(\;a = \) e.g. 2