Properties

Label 12138.11003
Modulus $12138$
Conductor $6069$
Order $68$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12138, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([34,34,39]))
 
Copy content pari:[g,chi] = znchar(Mod(11003,12138))
 

Basic properties

Modulus: \(12138\)
Conductor: \(6069\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{6069}(4934,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 12138.bz

\(\chi_{12138}(293,\cdot)\) \(\chi_{12138}(965,\cdot)\) \(\chi_{12138}(1007,\cdot)\) \(\chi_{12138}(1679,\cdot)\) \(\chi_{12138}(1721,\cdot)\) \(\chi_{12138}(2393,\cdot)\) \(\chi_{12138}(2435,\cdot)\) \(\chi_{12138}(3107,\cdot)\) \(\chi_{12138}(3149,\cdot)\) \(\chi_{12138}(3821,\cdot)\) \(\chi_{12138}(3863,\cdot)\) \(\chi_{12138}(4535,\cdot)\) \(\chi_{12138}(4577,\cdot)\) \(\chi_{12138}(5249,\cdot)\) \(\chi_{12138}(5291,\cdot)\) \(\chi_{12138}(5963,\cdot)\) \(\chi_{12138}(6005,\cdot)\) \(\chi_{12138}(6677,\cdot)\) \(\chi_{12138}(6719,\cdot)\) \(\chi_{12138}(7391,\cdot)\) \(\chi_{12138}(7433,\cdot)\) \(\chi_{12138}(8105,\cdot)\) \(\chi_{12138}(8147,\cdot)\) \(\chi_{12138}(8819,\cdot)\) \(\chi_{12138}(8861,\cdot)\) \(\chi_{12138}(9533,\cdot)\) \(\chi_{12138}(10247,\cdot)\) \(\chi_{12138}(10289,\cdot)\) \(\chi_{12138}(10961,\cdot)\) \(\chi_{12138}(11003,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

Values on generators

\((8093,10405,9829)\) → \((-1,-1,e\left(\frac{39}{68}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 12138 }(11003, a) \) \(1\)\(1\)\(e\left(\frac{23}{68}\right)\)\(e\left(\frac{47}{68}\right)\)\(e\left(\frac{31}{34}\right)\)\(e\left(\frac{9}{17}\right)\)\(e\left(\frac{27}{68}\right)\)\(e\left(\frac{23}{34}\right)\)\(e\left(\frac{13}{68}\right)\)\(e\left(\frac{45}{68}\right)\)\(e\left(\frac{67}{68}\right)\)\(e\left(\frac{5}{68}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 12138 }(11003,a) \;\) at \(\;a = \) e.g. 2