sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1210, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([15,14]))
pari:[g,chi] = znchar(Mod(403,1210))
\(\chi_{1210}(233,\cdot)\)
\(\chi_{1210}(403,\cdot)\)
\(\chi_{1210}(457,\cdot)\)
\(\chi_{1210}(717,\cdot)\)
\(\chi_{1210}(723,\cdot)\)
\(\chi_{1210}(887,\cdot)\)
\(\chi_{1210}(1183,\cdot)\)
\(\chi_{1210}(1207,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,1091)\) → \((-i,e\left(\frac{7}{10}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 1210 }(403, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) |
sage:chi.jacobi_sum(n)