![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(121, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([24]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(121, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([24]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(82,121))
        pari:[g,chi] = znchar(Mod(82,121))
         
     
    
  
   | Modulus: | \(121\) |  | 
   | Conductor: | \(121\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(55\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{121}(4,\cdot)\)
  \(\chi_{121}(5,\cdot)\)
  \(\chi_{121}(14,\cdot)\)
  \(\chi_{121}(15,\cdot)\)
  \(\chi_{121}(16,\cdot)\)
  \(\chi_{121}(20,\cdot)\)
  \(\chi_{121}(25,\cdot)\)
  \(\chi_{121}(26,\cdot)\)
  \(\chi_{121}(31,\cdot)\)
  \(\chi_{121}(36,\cdot)\)
  \(\chi_{121}(37,\cdot)\)
  \(\chi_{121}(38,\cdot)\)
  \(\chi_{121}(42,\cdot)\)
  \(\chi_{121}(47,\cdot)\)
  \(\chi_{121}(48,\cdot)\)
  \(\chi_{121}(49,\cdot)\)
  \(\chi_{121}(53,\cdot)\)
  \(\chi_{121}(58,\cdot)\)
  \(\chi_{121}(59,\cdot)\)
  \(\chi_{121}(60,\cdot)\)
  \(\chi_{121}(64,\cdot)\)
  \(\chi_{121}(69,\cdot)\)
  \(\chi_{121}(70,\cdot)\)
  \(\chi_{121}(71,\cdot)\)
  \(\chi_{121}(75,\cdot)\)
  \(\chi_{121}(80,\cdot)\)
  \(\chi_{121}(82,\cdot)\)
  \(\chi_{121}(86,\cdot)\)
  \(\chi_{121}(91,\cdot)\)
  \(\chi_{121}(92,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\(2\) → \(e\left(\frac{12}{55}\right)\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) | 
    
    
      | \( \chi_{ 121 }(82, a) \) | \(1\) | \(1\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)