sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([78,95]))
pari:[g,chi] = znchar(Mod(748,1183))
Modulus: | \(1183\) | |
Conductor: | \(1183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1183}(6,\cdot)\)
\(\chi_{1183}(20,\cdot)\)
\(\chi_{1183}(41,\cdot)\)
\(\chi_{1183}(76,\cdot)\)
\(\chi_{1183}(97,\cdot)\)
\(\chi_{1183}(111,\cdot)\)
\(\chi_{1183}(132,\cdot)\)
\(\chi_{1183}(167,\cdot)\)
\(\chi_{1183}(202,\cdot)\)
\(\chi_{1183}(223,\cdot)\)
\(\chi_{1183}(279,\cdot)\)
\(\chi_{1183}(293,\cdot)\)
\(\chi_{1183}(314,\cdot)\)
\(\chi_{1183}(349,\cdot)\)
\(\chi_{1183}(370,\cdot)\)
\(\chi_{1183}(384,\cdot)\)
\(\chi_{1183}(405,\cdot)\)
\(\chi_{1183}(440,\cdot)\)
\(\chi_{1183}(461,\cdot)\)
\(\chi_{1183}(475,\cdot)\)
\(\chi_{1183}(496,\cdot)\)
\(\chi_{1183}(531,\cdot)\)
\(\chi_{1183}(552,\cdot)\)
\(\chi_{1183}(566,\cdot)\)
\(\chi_{1183}(622,\cdot)\)
\(\chi_{1183}(643,\cdot)\)
\(\chi_{1183}(678,\cdot)\)
\(\chi_{1183}(713,\cdot)\)
\(\chi_{1183}(734,\cdot)\)
\(\chi_{1183}(748,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((339,1016)\) → \((-1,e\left(\frac{95}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 1183 }(748, a) \) |
\(1\) | \(1\) | \(e\left(\frac{95}{156}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{97}{156}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{113}{156}\right)\) | \(e\left(\frac{3}{13}\right)\) |
sage:chi.jacobi_sum(n)