sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([26,2]))
pari:[g,chi] = znchar(Mod(16,1183))
Modulus: | \(1183\) | |
Conductor: | \(1183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(39\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1183}(16,\cdot)\)
\(\chi_{1183}(74,\cdot)\)
\(\chi_{1183}(107,\cdot)\)
\(\chi_{1183}(165,\cdot)\)
\(\chi_{1183}(198,\cdot)\)
\(\chi_{1183}(256,\cdot)\)
\(\chi_{1183}(289,\cdot)\)
\(\chi_{1183}(347,\cdot)\)
\(\chi_{1183}(380,\cdot)\)
\(\chi_{1183}(438,\cdot)\)
\(\chi_{1183}(471,\cdot)\)
\(\chi_{1183}(562,\cdot)\)
\(\chi_{1183}(620,\cdot)\)
\(\chi_{1183}(711,\cdot)\)
\(\chi_{1183}(744,\cdot)\)
\(\chi_{1183}(802,\cdot)\)
\(\chi_{1183}(835,\cdot)\)
\(\chi_{1183}(893,\cdot)\)
\(\chi_{1183}(926,\cdot)\)
\(\chi_{1183}(984,\cdot)\)
\(\chi_{1183}(1017,\cdot)\)
\(\chi_{1183}(1075,\cdot)\)
\(\chi_{1183}(1108,\cdot)\)
\(\chi_{1183}(1166,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((339,1016)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{1}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 1183 }(16, a) \) |
\(1\) | \(1\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) |
sage:chi.jacobi_sum(n)