L(s) = 1 | + (−0.354 − 0.935i)2-s + (−0.996 − 0.0804i)3-s + (−0.748 + 0.663i)4-s + (0.799 − 0.600i)5-s + (0.278 + 0.960i)6-s + (0.885 + 0.464i)8-s + (0.987 + 0.160i)9-s + (−0.845 − 0.534i)10-s + (0.987 − 0.160i)11-s + (0.799 − 0.600i)12-s + (−0.845 + 0.534i)15-s + (0.120 − 0.992i)16-s + (0.885 + 0.464i)17-s + (−0.200 − 0.979i)18-s + (−0.5 + 0.866i)19-s + (−0.200 + 0.979i)20-s + ⋯ |
L(s) = 1 | + (−0.354 − 0.935i)2-s + (−0.996 − 0.0804i)3-s + (−0.748 + 0.663i)4-s + (0.799 − 0.600i)5-s + (0.278 + 0.960i)6-s + (0.885 + 0.464i)8-s + (0.987 + 0.160i)9-s + (−0.845 − 0.534i)10-s + (0.987 − 0.160i)11-s + (0.799 − 0.600i)12-s + (−0.845 + 0.534i)15-s + (0.120 − 0.992i)16-s + (0.885 + 0.464i)17-s + (−0.200 − 0.979i)18-s + (−0.5 + 0.866i)19-s + (−0.200 + 0.979i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.673 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.673 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.025970905 - 0.4532628207i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.025970905 - 0.4532628207i\) |
\(L(1)\) |
\(\approx\) |
\(0.7621971061 - 0.3381033785i\) |
\(L(1)\) |
\(\approx\) |
\(0.7621971061 - 0.3381033785i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.354 - 0.935i)T \) |
| 3 | \( 1 + (-0.996 - 0.0804i)T \) |
| 5 | \( 1 + (0.799 - 0.600i)T \) |
| 11 | \( 1 + (0.987 - 0.160i)T \) |
| 17 | \( 1 + (0.885 + 0.464i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.987 + 0.160i)T \) |
| 31 | \( 1 + (0.692 - 0.721i)T \) |
| 37 | \( 1 + (-0.970 - 0.239i)T \) |
| 41 | \( 1 + (0.428 + 0.903i)T \) |
| 43 | \( 1 + (0.692 + 0.721i)T \) |
| 47 | \( 1 + (-0.200 + 0.979i)T \) |
| 53 | \( 1 + (-0.845 + 0.534i)T \) |
| 59 | \( 1 + (0.120 + 0.992i)T \) |
| 61 | \( 1 + (-0.0402 + 0.999i)T \) |
| 67 | \( 1 + (-0.200 + 0.979i)T \) |
| 71 | \( 1 + (-0.996 - 0.0804i)T \) |
| 73 | \( 1 + (-0.632 - 0.774i)T \) |
| 79 | \( 1 + (-0.200 + 0.979i)T \) |
| 83 | \( 1 + (0.568 + 0.822i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.919 + 0.391i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.673428409204746858980208907755, −20.74146257078634881477543199960, −19.23726270155756794005949433969, −18.936331726691329539100409762906, −17.86331892150247330480063380875, −17.387858783358747352494655545828, −16.97836090632089862402894924701, −15.993061269115264785642537362957, −15.290403082791256218811488090923, −14.4035295786022558393877647963, −13.78833697102417657730521921401, −12.82808785948969005326534268427, −11.8694527035828348696527059648, −10.84613560508457145618583869379, −10.22551463558146621027393997118, −9.46920897759789749241280162200, −8.72190886235445603682707770627, −7.31495709961645806664324896344, −6.76652416098453877041073076828, −6.20426370393882983058304900033, −5.25851621988275537522050405762, −4.6493029411547856775673119016, −3.37263500072258840563762024390, −1.78969381876515331366446770547, −0.77546954393103089297887129357,
1.12173816433962205538484530767, 1.40115844979759685562172914667, 2.75313514065227058462285013555, 4.03746976242878083522115110450, 4.70806650935005441154625476649, 5.72522672561935440904029858647, 6.42358353015873522345181585154, 7.65808854267730984770782438235, 8.63719606336299099987110628168, 9.473096335693966865439320631256, 10.157530754833536551299097286997, 10.83199769950300044053810720178, 11.80543163859698861693218769274, 12.37116270360298913925230735440, 12.979125548352006421069455565594, 13.86310565792883226170451881376, 14.72945317765195666523712949849, 16.27906149824806631804296515807, 16.70941275852354289632086150384, 17.444678795663775959735003122018, 17.830249906526794952786658401863, 19.03156944681966237261280141103, 19.28666871292826190020326376867, 20.59093035513227636583696389662, 21.181722861753674633938111319777