sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11424, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,42,24,40,21]))
pari:[g,chi] = znchar(Mod(4499,11424))
Modulus: | \(11424\) | |
Conductor: | \(11424\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(48\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{11424}(1235,\cdot)\)
\(\chi_{11424}(1571,\cdot)\)
\(\chi_{11424}(1739,\cdot)\)
\(\chi_{11424}(2987,\cdot)\)
\(\chi_{11424}(4499,\cdot)\)
\(\chi_{11424}(4763,\cdot)\)
\(\chi_{11424}(4835,\cdot)\)
\(\chi_{11424}(5003,\cdot)\)
\(\chi_{11424}(5603,\cdot)\)
\(\chi_{11424}(5939,\cdot)\)
\(\chi_{11424}(8027,\cdot)\)
\(\chi_{11424}(8123,\cdot)\)
\(\chi_{11424}(8867,\cdot)\)
\(\chi_{11424}(9203,\cdot)\)
\(\chi_{11424}(11147,\cdot)\)
\(\chi_{11424}(11387,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,7141,3809,3265,2689)\) → \((-1,e\left(\frac{7}{8}\right),-1,e\left(\frac{5}{6}\right),e\left(\frac{7}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 11424 }(4499, a) \) |
\(1\) | \(1\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) |
sage:chi.jacobi_sum(n)