Properties

Label 1122.505
Modulus $1122$
Conductor $187$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1122, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,8,13]))
 
Copy content pari:[g,chi] = znchar(Mod(505,1122))
 

Basic properties

Modulus: \(1122\)
Conductor: \(187\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{187}(131,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1122.z

\(\chi_{1122}(109,\cdot)\) \(\chi_{1122}(175,\cdot)\) \(\chi_{1122}(241,\cdot)\) \(\chi_{1122}(439,\cdot)\) \(\chi_{1122}(505,\cdot)\) \(\chi_{1122}(571,\cdot)\) \(\chi_{1122}(703,\cdot)\) \(\chi_{1122}(1099,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.613585802270249473903607633.1

Values on generators

\((749,409,1057)\) → \((1,-1,e\left(\frac{13}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)\(37\)
\( \chi_{ 1122 }(505, a) \) \(1\)\(1\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(-i\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(-1\)\(e\left(\frac{13}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1122 }(505,a) \;\) at \(\;a = \) e.g. 2