sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1120, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,6,3,10]))
pari:[g,chi] = znchar(Mod(817,1120))
\(\chi_{1120}(17,\cdot)\)
\(\chi_{1120}(593,\cdot)\)
\(\chi_{1120}(817,\cdot)\)
\(\chi_{1120}(913,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((351,421,897,801)\) → \((1,-1,i,e\left(\frac{5}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 1120 }(817, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)