Properties

Label 1120.501
Modulus $1120$
Conductor $224$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,15,0,16]))
 
Copy content pari:[g,chi] = znchar(Mod(501,1120))
 

Basic properties

Modulus: \(1120\)
Conductor: \(224\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{224}(53,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1120.ef

\(\chi_{1120}(221,\cdot)\) \(\chi_{1120}(261,\cdot)\) \(\chi_{1120}(501,\cdot)\) \(\chi_{1120}(541,\cdot)\) \(\chi_{1120}(781,\cdot)\) \(\chi_{1120}(821,\cdot)\) \(\chi_{1120}(1061,\cdot)\) \(\chi_{1120}(1101,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.329123002999201416128761938882499016916992.1

Values on generators

\((351,421,897,801)\) → \((1,e\left(\frac{5}{8}\right),1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 1120 }(501, a) \) \(1\)\(1\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1120 }(501,a) \;\) at \(\;a = \) e.g. 2