Properties

Label 11025.gf
Modulus $11025$
Conductor $1575$
Order $60$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11025, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([10,57,40])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(263,11025)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(11025\)
Conductor: \(1575\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1575.em
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(17\) \(19\) \(22\) \(23\)
\(\chi_{11025}(263,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{37}{60}\right)\)
\(\chi_{11025}(1598,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{53}{60}\right)\)
\(\chi_{11025}(2027,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{43}{60}\right)\)
\(\chi_{11025}(3362,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{47}{60}\right)\)
\(\chi_{11025}(3803,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{41}{60}\right)\)
\(\chi_{11025}(4673,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{60}\right)\)
\(\chi_{11025}(5567,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{59}{60}\right)\)
\(\chi_{11025}(6008,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{29}{60}\right)\)
\(\chi_{11025}(6437,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{60}\right)\)
\(\chi_{11025}(6878,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{60}\right)\)
\(\chi_{11025}(7772,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{60}\right)\)
\(\chi_{11025}(8213,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{17}{60}\right)\)
\(\chi_{11025}(8642,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{60}\right)\)
\(\chi_{11025}(9083,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{49}{60}\right)\)
\(\chi_{11025}(9977,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{23}{60}\right)\)
\(\chi_{11025}(10847,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{31}{60}\right)\)