Properties

Label 11025.eo
Modulus $11025$
Conductor $1575$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11025, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([20,9,20])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(214,11025)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(11025\)
Conductor: \(1575\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1575.dy
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(17\) \(19\) \(22\) \(23\)
\(\chi_{11025}(214,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{29}{30}\right)\)
\(\chi_{11025}(814,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{19}{30}\right)\)
\(\chi_{11025}(2419,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{17}{30}\right)\)
\(\chi_{11025}(3019,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{7}{30}\right)\)
\(\chi_{11025}(6829,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{11025}(7429,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{13}{30}\right)\)
\(\chi_{11025}(9034,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{11}{30}\right)\)
\(\chi_{11025}(9634,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{30}\right)\)