Properties

Label 11025.9476
Modulus $11025$
Conductor $21$
Order $6$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11025, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([3,0,5]))
 
Copy content pari:[g,chi] = znchar(Mod(9476,11025))
 

Basic properties

Modulus: \(11025\)
Conductor: \(21\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(6\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{21}(5,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 11025.bk

\(\chi_{11025}(2726,\cdot)\) \(\chi_{11025}(9476,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: \(\Q(\zeta_{21})^+\)

Values on generators

\((1226,4852,9901)\) → \((-1,1,e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 11025 }(9476, a) \) \(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(-1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)\(e\left(\frac{1}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 11025 }(9476,a) \;\) at \(\;a = \) e.g. 2