sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11025, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([35,21,25]))
pari:[g,chi] = znchar(Mod(929,11025))
| Modulus: | \(11025\) | |
| Conductor: | \(11025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{11025}(59,\cdot)\)
\(\chi_{11025}(614,\cdot)\)
\(\chi_{11025}(689,\cdot)\)
\(\chi_{11025}(929,\cdot)\)
\(\chi_{11025}(1004,\cdot)\)
\(\chi_{11025}(1319,\cdot)\)
\(\chi_{11025}(1559,\cdot)\)
\(\chi_{11025}(1634,\cdot)\)
\(\chi_{11025}(2189,\cdot)\)
\(\chi_{11025}(2264,\cdot)\)
\(\chi_{11025}(2504,\cdot)\)
\(\chi_{11025}(2819,\cdot)\)
\(\chi_{11025}(2894,\cdot)\)
\(\chi_{11025}(3134,\cdot)\)
\(\chi_{11025}(3209,\cdot)\)
\(\chi_{11025}(3764,\cdot)\)
\(\chi_{11025}(3839,\cdot)\)
\(\chi_{11025}(4079,\cdot)\)
\(\chi_{11025}(4154,\cdot)\)
\(\chi_{11025}(4394,\cdot)\)
\(\chi_{11025}(4469,\cdot)\)
\(\chi_{11025}(4709,\cdot)\)
\(\chi_{11025}(5339,\cdot)\)
\(\chi_{11025}(5414,\cdot)\)
\(\chi_{11025}(5729,\cdot)\)
\(\chi_{11025}(5969,\cdot)\)
\(\chi_{11025}(6044,\cdot)\)
\(\chi_{11025}(6284,\cdot)\)
\(\chi_{11025}(6359,\cdot)\)
\(\chi_{11025}(6914,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,4852,9901)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{1}{10}\right),e\left(\frac{5}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
| \( \chi_{ 11025 }(929, a) \) |
\(1\) | \(1\) | \(e\left(\frac{38}{105}\right)\) | \(e\left(\frac{76}{105}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{37}{70}\right)\) | \(e\left(\frac{17}{105}\right)\) | \(e\left(\frac{47}{105}\right)\) | \(e\left(\frac{163}{210}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{187}{210}\right)\) | \(e\left(\frac{16}{35}\right)\) |
sage:chi.jacobi_sum(n)