sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11025, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([35,189,65]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(794,11025))
         
     
    
  
   | Modulus: |  \(11025\) |   |  
   | Conductor: |  \(11025\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(210\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{11025}(164,\cdot)\)
  \(\chi_{11025}(194,\cdot)\)
  \(\chi_{11025}(479,\cdot)\)
  \(\chi_{11025}(794,\cdot)\)
  \(\chi_{11025}(1139,\cdot)\)
  \(\chi_{11025}(1454,\cdot)\)
  \(\chi_{11025}(1739,\cdot)\)
  \(\chi_{11025}(1769,\cdot)\)
  \(\chi_{11025}(2054,\cdot)\)
  \(\chi_{11025}(2084,\cdot)\)
  \(\chi_{11025}(2369,\cdot)\)
  \(\chi_{11025}(2684,\cdot)\)
  \(\chi_{11025}(3029,\cdot)\)
  \(\chi_{11025}(3344,\cdot)\)
  \(\chi_{11025}(3629,\cdot)\)
  \(\chi_{11025}(3659,\cdot)\)
  \(\chi_{11025}(3944,\cdot)\)
  \(\chi_{11025}(4259,\cdot)\)
  \(\chi_{11025}(4289,\cdot)\)
  \(\chi_{11025}(4604,\cdot)\)
  \(\chi_{11025}(4889,\cdot)\)
  \(\chi_{11025}(5204,\cdot)\)
  \(\chi_{11025}(5234,\cdot)\)
  \(\chi_{11025}(5834,\cdot)\)
  \(\chi_{11025}(5864,\cdot)\)
  \(\chi_{11025}(6179,\cdot)\)
  \(\chi_{11025}(6464,\cdot)\)
  \(\chi_{11025}(6494,\cdot)\)
  \(\chi_{11025}(6779,\cdot)\)
  \(\chi_{11025}(6809,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1226,4852,9901)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{9}{10}\right),e\left(\frac{13}{42}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |       
    
    
      | \( \chi_{ 11025 }(794, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{8}{35}\right)\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{199}{210}\right)\) | \(e\left(\frac{68}{105}\right)\) | \(e\left(\frac{16}{35}\right)\) | \(e\left(\frac{197}{210}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{13}{210}\right)\) | \(e\left(\frac{52}{105}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)