Properties

Label 11025.6103
Modulus $11025$
Conductor $1225$
Order $140$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11025, base_ring=CyclotomicField(140)) M = H._module chi = DirichletCharacter(H, M([0,49,10]))
 
Copy content pari:[g,chi] = znchar(Mod(6103,11025))
 

Basic properties

Modulus: \(11025\)
Conductor: \(1225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(140\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1225}(1203,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 11025.hm

\(\chi_{11025}(433,\cdot)\) \(\chi_{11025}(622,\cdot)\) \(\chi_{11025}(748,\cdot)\) \(\chi_{11025}(937,\cdot)\) \(\chi_{11025}(1063,\cdot)\) \(\chi_{11025}(1252,\cdot)\) \(\chi_{11025}(1378,\cdot)\) \(\chi_{11025}(2197,\cdot)\) \(\chi_{11025}(2323,\cdot)\) \(\chi_{11025}(2512,\cdot)\) \(\chi_{11025}(2638,\cdot)\) \(\chi_{11025}(2827,\cdot)\) \(\chi_{11025}(2953,\cdot)\) \(\chi_{11025}(3142,\cdot)\) \(\chi_{11025}(3583,\cdot)\) \(\chi_{11025}(3898,\cdot)\) \(\chi_{11025}(4087,\cdot)\) \(\chi_{11025}(4402,\cdot)\) \(\chi_{11025}(4528,\cdot)\) \(\chi_{11025}(4717,\cdot)\) \(\chi_{11025}(5158,\cdot)\) \(\chi_{11025}(5347,\cdot)\) \(\chi_{11025}(5473,\cdot)\) \(\chi_{11025}(5662,\cdot)\) \(\chi_{11025}(5788,\cdot)\) \(\chi_{11025}(6103,\cdot)\) \(\chi_{11025}(6292,\cdot)\) \(\chi_{11025}(6733,\cdot)\) \(\chi_{11025}(6922,\cdot)\) \(\chi_{11025}(7048,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

\((1226,4852,9901)\) → \((1,e\left(\frac{7}{20}\right),e\left(\frac{1}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 11025 }(6103, a) \) \(1\)\(1\)\(e\left(\frac{29}{140}\right)\)\(e\left(\frac{29}{70}\right)\)\(e\left(\frac{87}{140}\right)\)\(e\left(\frac{16}{35}\right)\)\(e\left(\frac{1}{140}\right)\)\(e\left(\frac{29}{35}\right)\)\(e\left(\frac{47}{140}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{93}{140}\right)\)\(e\left(\frac{79}{140}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 11025 }(6103,a) \;\) at \(\;a = \) e.g. 2