sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11025, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([70,21,80]))
pari:[g,chi] = znchar(Mod(4729,11025))
Modulus: | \(11025\) | |
Conductor: | \(11025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{11025}(4,\cdot)\)
\(\chi_{11025}(319,\cdot)\)
\(\chi_{11025}(394,\cdot)\)
\(\chi_{11025}(634,\cdot)\)
\(\chi_{11025}(709,\cdot)\)
\(\chi_{11025}(1264,\cdot)\)
\(\chi_{11025}(1339,\cdot)\)
\(\chi_{11025}(1579,\cdot)\)
\(\chi_{11025}(1654,\cdot)\)
\(\chi_{11025}(1894,\cdot)\)
\(\chi_{11025}(1969,\cdot)\)
\(\chi_{11025}(2209,\cdot)\)
\(\chi_{11025}(2839,\cdot)\)
\(\chi_{11025}(2914,\cdot)\)
\(\chi_{11025}(3229,\cdot)\)
\(\chi_{11025}(3469,\cdot)\)
\(\chi_{11025}(3544,\cdot)\)
\(\chi_{11025}(3784,\cdot)\)
\(\chi_{11025}(3859,\cdot)\)
\(\chi_{11025}(4414,\cdot)\)
\(\chi_{11025}(4729,\cdot)\)
\(\chi_{11025}(4804,\cdot)\)
\(\chi_{11025}(5044,\cdot)\)
\(\chi_{11025}(5119,\cdot)\)
\(\chi_{11025}(5434,\cdot)\)
\(\chi_{11025}(5989,\cdot)\)
\(\chi_{11025}(6064,\cdot)\)
\(\chi_{11025}(6304,\cdot)\)
\(\chi_{11025}(6379,\cdot)\)
\(\chi_{11025}(6619,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,4852,9901)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{1}{10}\right),e\left(\frac{8}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 11025 }(4729, a) \) |
\(1\) | \(1\) | \(e\left(\frac{71}{210}\right)\) | \(e\left(\frac{71}{105}\right)\) | \(e\left(\frac{1}{70}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{29}{210}\right)\) | \(e\left(\frac{37}{105}\right)\) | \(e\left(\frac{173}{210}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{107}{210}\right)\) | \(e\left(\frac{17}{70}\right)\) |
sage:chi.jacobi_sum(n)