Properties

Label 11025.3964
Modulus $11025$
Conductor $11025$
Order $210$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11025, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([70,63,40]))
 
Copy content pari:[g,chi] = znchar(Mod(3964,11025))
 

Basic properties

Modulus: \(11025\)
Conductor: \(11025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 11025.hp

\(\chi_{11025}(184,\cdot)\) \(\chi_{11025}(529,\cdot)\) \(\chi_{11025}(844,\cdot)\) \(\chi_{11025}(1129,\cdot)\) \(\chi_{11025}(1159,\cdot)\) \(\chi_{11025}(1444,\cdot)\) \(\chi_{11025}(1759,\cdot)\) \(\chi_{11025}(1789,\cdot)\) \(\chi_{11025}(2104,\cdot)\) \(\chi_{11025}(2389,\cdot)\) \(\chi_{11025}(2704,\cdot)\) \(\chi_{11025}(2734,\cdot)\) \(\chi_{11025}(3334,\cdot)\) \(\chi_{11025}(3364,\cdot)\) \(\chi_{11025}(3679,\cdot)\) \(\chi_{11025}(3964,\cdot)\) \(\chi_{11025}(3994,\cdot)\) \(\chi_{11025}(4279,\cdot)\) \(\chi_{11025}(4309,\cdot)\) \(\chi_{11025}(4594,\cdot)\) \(\chi_{11025}(4909,\cdot)\) \(\chi_{11025}(4939,\cdot)\) \(\chi_{11025}(5254,\cdot)\) \(\chi_{11025}(5539,\cdot)\) \(\chi_{11025}(5569,\cdot)\) \(\chi_{11025}(5854,\cdot)\) \(\chi_{11025}(5884,\cdot)\) \(\chi_{11025}(6169,\cdot)\) \(\chi_{11025}(6484,\cdot)\) \(\chi_{11025}(6514,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((1226,4852,9901)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{3}{10}\right),e\left(\frac{4}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 11025 }(3964, a) \) \(1\)\(1\)\(e\left(\frac{41}{70}\right)\)\(e\left(\frac{6}{35}\right)\)\(e\left(\frac{53}{70}\right)\)\(e\left(\frac{79}{105}\right)\)\(e\left(\frac{137}{210}\right)\)\(e\left(\frac{12}{35}\right)\)\(e\left(\frac{139}{210}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{71}{210}\right)\)\(e\left(\frac{43}{210}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 11025 }(3964,a) \;\) at \(\;a = \) e.g. 2