sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11025, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([70,63,40]))
pari:[g,chi] = znchar(Mod(3964,11025))
Modulus: | \(11025\) | |
Conductor: | \(11025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{11025}(184,\cdot)\)
\(\chi_{11025}(529,\cdot)\)
\(\chi_{11025}(844,\cdot)\)
\(\chi_{11025}(1129,\cdot)\)
\(\chi_{11025}(1159,\cdot)\)
\(\chi_{11025}(1444,\cdot)\)
\(\chi_{11025}(1759,\cdot)\)
\(\chi_{11025}(1789,\cdot)\)
\(\chi_{11025}(2104,\cdot)\)
\(\chi_{11025}(2389,\cdot)\)
\(\chi_{11025}(2704,\cdot)\)
\(\chi_{11025}(2734,\cdot)\)
\(\chi_{11025}(3334,\cdot)\)
\(\chi_{11025}(3364,\cdot)\)
\(\chi_{11025}(3679,\cdot)\)
\(\chi_{11025}(3964,\cdot)\)
\(\chi_{11025}(3994,\cdot)\)
\(\chi_{11025}(4279,\cdot)\)
\(\chi_{11025}(4309,\cdot)\)
\(\chi_{11025}(4594,\cdot)\)
\(\chi_{11025}(4909,\cdot)\)
\(\chi_{11025}(4939,\cdot)\)
\(\chi_{11025}(5254,\cdot)\)
\(\chi_{11025}(5539,\cdot)\)
\(\chi_{11025}(5569,\cdot)\)
\(\chi_{11025}(5854,\cdot)\)
\(\chi_{11025}(5884,\cdot)\)
\(\chi_{11025}(6169,\cdot)\)
\(\chi_{11025}(6484,\cdot)\)
\(\chi_{11025}(6514,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,4852,9901)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{3}{10}\right),e\left(\frac{4}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 11025 }(3964, a) \) |
\(1\) | \(1\) | \(e\left(\frac{41}{70}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{53}{70}\right)\) | \(e\left(\frac{79}{105}\right)\) | \(e\left(\frac{137}{210}\right)\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{139}{210}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{71}{210}\right)\) | \(e\left(\frac{43}{210}\right)\) |
sage:chi.jacobi_sum(n)