Properties

Label 11025.3529
Modulus $11025$
Conductor $25$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11025, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([0,1,0]))
 
Copy content pari:[g,chi] = znchar(Mod(3529,11025))
 

Basic properties

Modulus: \(11025\)
Conductor: \(25\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{25}(4,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 11025.by

\(\chi_{11025}(3529,\cdot)\) \(\chi_{11025}(5734,\cdot)\) \(\chi_{11025}(7939,\cdot)\) \(\chi_{11025}(10144,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: \(\Q(\zeta_{25})^+\)

Values on generators

\((1226,4852,9901)\) → \((1,e\left(\frac{1}{10}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 11025 }(3529, a) \) \(1\)\(1\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 11025 }(3529,a) \;\) at \(\;a = \) e.g. 2