sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11025, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([35,189,5]))
pari:[g,chi] = znchar(Mod(10244,11025))
| Modulus: | \(11025\) | |
| Conductor: | \(11025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{11025}(164,\cdot)\)
\(\chi_{11025}(194,\cdot)\)
\(\chi_{11025}(479,\cdot)\)
\(\chi_{11025}(794,\cdot)\)
\(\chi_{11025}(1139,\cdot)\)
\(\chi_{11025}(1454,\cdot)\)
\(\chi_{11025}(1739,\cdot)\)
\(\chi_{11025}(1769,\cdot)\)
\(\chi_{11025}(2054,\cdot)\)
\(\chi_{11025}(2084,\cdot)\)
\(\chi_{11025}(2369,\cdot)\)
\(\chi_{11025}(2684,\cdot)\)
\(\chi_{11025}(3029,\cdot)\)
\(\chi_{11025}(3344,\cdot)\)
\(\chi_{11025}(3629,\cdot)\)
\(\chi_{11025}(3659,\cdot)\)
\(\chi_{11025}(3944,\cdot)\)
\(\chi_{11025}(4259,\cdot)\)
\(\chi_{11025}(4289,\cdot)\)
\(\chi_{11025}(4604,\cdot)\)
\(\chi_{11025}(4889,\cdot)\)
\(\chi_{11025}(5204,\cdot)\)
\(\chi_{11025}(5234,\cdot)\)
\(\chi_{11025}(5834,\cdot)\)
\(\chi_{11025}(5864,\cdot)\)
\(\chi_{11025}(6179,\cdot)\)
\(\chi_{11025}(6464,\cdot)\)
\(\chi_{11025}(6494,\cdot)\)
\(\chi_{11025}(6779,\cdot)\)
\(\chi_{11025}(6809,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,4852,9901)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{9}{10}\right),e\left(\frac{1}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
| \( \chi_{ 11025 }(10244, a) \) |
\(1\) | \(1\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{13}{35}\right)\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{109}{210}\right)\) | \(e\left(\frac{23}{105}\right)\) | \(e\left(\frac{26}{35}\right)\) | \(e\left(\frac{167}{210}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{43}{210}\right)\) | \(e\left(\frac{67}{105}\right)\) |
sage:chi.jacobi_sum(n)