sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1081, base_ring=CyclotomicField(506))
M = H._module
chi = DirichletCharacter(H, M([69,88]))
pari:[g,chi] = znchar(Mod(102,1081))
| Modulus: | \(1081\) | |
| Conductor: | \(1081\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(506\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1081}(7,\cdot)\)
\(\chi_{1081}(14,\cdot)\)
\(\chi_{1081}(17,\cdot)\)
\(\chi_{1081}(21,\cdot)\)
\(\chi_{1081}(28,\cdot)\)
\(\chi_{1081}(34,\cdot)\)
\(\chi_{1081}(37,\cdot)\)
\(\chi_{1081}(42,\cdot)\)
\(\chi_{1081}(51,\cdot)\)
\(\chi_{1081}(53,\cdot)\)
\(\chi_{1081}(56,\cdot)\)
\(\chi_{1081}(61,\cdot)\)
\(\chi_{1081}(63,\cdot)\)
\(\chi_{1081}(65,\cdot)\)
\(\chi_{1081}(74,\cdot)\)
\(\chi_{1081}(79,\cdot)\)
\(\chi_{1081}(83,\cdot)\)
\(\chi_{1081}(84,\cdot)\)
\(\chi_{1081}(89,\cdot)\)
\(\chi_{1081}(97,\cdot)\)
\(\chi_{1081}(102,\cdot)\)
\(\chi_{1081}(103,\cdot)\)
\(\chi_{1081}(106,\cdot)\)
\(\chi_{1081}(111,\cdot)\)
\(\chi_{1081}(112,\cdot)\)
\(\chi_{1081}(122,\cdot)\)
\(\chi_{1081}(126,\cdot)\)
\(\chi_{1081}(130,\cdot)\)
\(\chi_{1081}(136,\cdot)\)
\(\chi_{1081}(143,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((189,898)\) → \((e\left(\frac{3}{22}\right),e\left(\frac{4}{23}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 1081 }(102, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{102}{253}\right)\) | \(e\left(\frac{167}{253}\right)\) | \(e\left(\frac{204}{253}\right)\) | \(e\left(\frac{157}{506}\right)\) | \(e\left(\frac{16}{253}\right)\) | \(e\left(\frac{79}{506}\right)\) | \(e\left(\frac{53}{253}\right)\) | \(e\left(\frac{81}{253}\right)\) | \(e\left(\frac{361}{506}\right)\) | \(e\left(\frac{225}{506}\right)\) |
sage:chi.jacobi_sum(n)